The stability and instability of thick continents

David Bell

AEON and Arizona State University

Claude Jaupart

IPGP

Michel Grégoire

CNRS Observatoire du Midi-Pyrenéés

ISSUES

- Lithospheric stability depends on thermal structure and thermal evolution
- Heat production in lithospheric mantle poorly known

- (1) What determines thickness
- (2) Stability

QUESTION 1 What makes thick and cold continents stable ?

Sub-continental lithosphere is made of depleted mantle rocks,

i.e. material that is

(1) buoyant(2) viscous (dehydrated)

QUESTIONS 2

- (1) Magnitude of density change due to depletion.
- (2) If $\Delta \rho_c \approx \Delta \rho_T$, what accuracy is required for temperature determinations in deep lithosphere ?

Geoid anomalies over cratons are small

Geoid anomalies over cratons are small

$\Delta \rho_T$ is partially compensated by $\Delta \rho_c$

Mantle xenoliths

Finsch kimberlite mine, South Africa

Composition of the subcontinental lithospheric mantle: (1) depleted, (2) varies as a function of age.

(From Schutt & Lesher, JGR 2006)

(P,T) data from South Africa

Best used together with (1) surface heat flow value, (2) thermal model.

Calculation of continental geotherm (downward continuation)

- (1) Surface heat flow density
- (2) 1-D diffusion equation
- (3) Steady-state ?
- (4) Crustal radioactivity
- (5) Mantle radioactivity

Steady state ?

Radioactive heat production decays with time:

Nuclide	²³⁸ U	235U	²³² Th	⁴⁰ K
T _{1/2} (Ga)	4,46	0,70	14,0	1,26

A has decreased by a factor of **2.5** in the last 3 Gyr.

 \Rightarrow T_r \approx 3 Gyr

Characteristic time for diffusion through continent: $T_d = \frac{H^2}{\kappa}$ H \approx 250 km \rightarrow T_d \approx 1.9 Gyr

Departure from instantaneous thermal equilibrium

 $\mathbf{H} = \mathbf{250} \ \mathbf{km}$

 $Q_b = 10 \text{ mW.m}^{-2}$ $A_c = 0.9 \mu \text{W.m}^{-3}$ $A_m = 0.02 \mu \text{W.m}^{-3}$

The departure from the steady-state profile increases with depth. The T-profile has significant curvature.

(work done in collaboration with David Bell and Chloé Michaut)

Fit to xenolith (P,T) data

Temperature difference near base of lithosphere ≈ 150 K

OBSERVATIONS

- Two geochemically distinct groups of kimberlites erupted in southern Africa during the Mesozoic
- Group I kimberlites erupted about 30 Ma after Group II kimberlites in the same area
- Archean cratonic xenoliths from Group I and Group II kimberlites define different geotherms

Longitude vs. Age Mesozoic kimberlites and related rocks

Newlands (Group II) PT data compared with Kaapvaal Cretaceous Group I kimberlites

Difference from RN Kalahari Geotherm

QUESTIONS

- Does the hotter geotherm represent conductive adjustment of the lithosphere to heating +/- thinning at the base?
- How much of the temperature difference is due to influx of radioactive HPE during Mesozoic metasomatism?
- How much of the temperature difference is due to longstanding (~1-3 Ga) heterogeneities in HPE distribution

"Plume" – lithosphere interaction:

metasomatism, lithospheric thinning, heating, kimberlite eruption

Metasomatic heating hypothesis

- Conductive heating by Karoo plume "sweated out" minimum melts from lithosphere (orangeite/MARID)
- Also plume melts arrested at base of lithosphere percolated into lithosphere and differentiated to carbonatitic melts
- Both could transport heat to higher levels in lithosphere
- Abundant petrologic evidence for metasomatism in Kimberley xenoliths, but not at Newlands.

Dynamic – lithosphere erosion and metasomatic heating

Thermal structure and lithosphere thickness

Jaupart & Mareschal 1999

Thickness of craton roots

Thermal modeling (Michaut et al. 2007)

SlaveKaapvaal Group IIKaapvaal Group I200-245 km200-240 km175-210 km

QUESTION

 Is there enough time (< 30 Ma) to propagate temperature changes at the base of the lithosphere into the shallow lithospheric mantle by conduction? Possible solution to heat supply problem: Metasomatic heating followed by increased heat production in metasomatized zones

Wt. % K₂O

High heat production by K-rich metasomatic minerals (phlogopite, K-richterite) can generate heating in required time.

PROBLEM

- At T < ~1000 C, there does not seem to be enough time (< 30 Ma) for chemical diffusion to permit minerals to fully adjust compositionally to increased lithospheric temperature
- This adjustment must have occurred or we would not record different geotherms

Timescales for mineral equilibration

Summary

- Temperature differences exist within the South African mantle lithosphere.
- In Proterozoic mantle domains there is a time-dependent westwardmigrating Mesozoic heating event (Bell et al. 2003).
- In Archean mantle, a combination of lithospheric erosion, metasomatic heating and increased heat production from metasomatism can be the cause of a Mesozoic increase in lithospheric temperature; however, this explanation appears to incur problems with mineral re-equilibration rates.
- In Kaapvaal, variation in HPE established early in craton history may result in long-lived, short-wavelength lateral variations in temperature, which can potentially influence lithospheric tectonics. *Work in progress to test this hypothesis*

HYPOTHESIS

- There are pre-existing lateral (and vertical) variations in HPE concentration and consequently, temperature, in the lithospheric mantle
- High HPE regions developed by hydrous metasomatism during ancient subduction events
- These warmer, wetter, and weaker zones become foci for deformation, magmatic intrusion and repeated re-activation of continental lithosphere.

Could there be long-term lateral T gradients due to HP variations?

- Difficult to measure K, U, Th due to kimberlite contamination (>90% of WR incompatible elements on grain boundaries)
- Curvature of geotherm could be obscured by later heating of deep xenoliths.
- Evidence for low temperatures in Kimberley diamond inclusions supports curvature in geotherm
- Shallow lithosphere may be variable in HPE (high at Kimberley, low at Newlands) but deep lithosphere appears uniformly low in HPE. These observations can be explained by phlogopite distribution

PROJECT

- Measure HPE content of lithospheric mantle rocks from the Kaapvaal Craton
- Compare HPE in regions with different geotherms

Project details

- Bulk determinations of HPE in xenoliths are generally meaningless due to contamination by kimberlite hence mineral and modal analysis
- Both young (Mesozoic) and ancient (? 2.9 Ga) metasomatism have affected the Kimberley mantle (and possibly other events too)
- A long term project (Grégoire, Bell, Le Roex) is dedicated to unraveling the characteristics of these events using LA-ICP-MS and MC-ICP-MS trace element and isotope studies
- HPE (K, U, Th) are being determined in minerals at CNRS, Toulouse
- Focus on HPE in depleted garnet harzburgites containing dispersed phlogopite with characteristic high Ba/Ti

Two generations of metasomatic phlogopite in Kimberley xenoliths

Phlogopite in Kimberley xenoliths

Is this a map of lithospheric HPE content?

South Africa

Thickness of continental lithosphere

(from Poudjom-Djomani, O'Reilly & Griffin)

There are several stable states in (thickness, density) space.

Variations in long-term HPE content exploited by plume reactivation

Inversion of dispersion curves

Inversion of dispersion curve with heat flow constraint

Is Archean lithosphere stable ?

STABILITY AGAINST CONVECTIVE OVERTURN

STABILITY AGAINST CONVECTIVE OVERTURN

5 dimensionless numbers

Rayleigh number $Ra = \frac{g \alpha \Delta T h^3}{\kappa \mu_1}$ (calculated for
layer 1)Buoyancy number $B = \Delta \rho_c / \Delta \rho_T$ Viscosity ratio $\gamma = \mu_1 / \mu_2 \gg 1$ Thickness ratio $h_1 / h_2 \ll 1$ Prandtl number $Pr = v/\kappa \gg 1$

1. Theory : stability analysis.

Early melting events are episodic

(From Eglington & Armstrong, S. African J. Geol. 2004)

Path to stability

Path to stability

Across North America

Thermal structure with decaying heat sources is intrinsically transient :

secular disequilibrium

 $T_i(z,t) = Z_i(z)e^{-\lambda_i t}$

 \Rightarrow SECULAR COOLING

Temperatures and heat flux are **not** in instantaneous equilibrium with heat production.